MATH 2050B Tutorial 2

October 5, 2016

Exercise 1. Evaluate the following limits by definition

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{5 n^{2}+2 n+1}{3 n^{2}+n+2} \tag{1}\\
& \lim _{n \rightarrow \infty} \frac{5 n^{2}+2 n+1}{3 n^{2}-n-1} \tag{2}
\end{align*}
$$

Exercise 2. Let A be a nonempty bounded above subset of \mathbb{R}, and let $\sup (A)=\alpha \in \mathbb{R}$.

1. Construct a monotone increasing sequence $\left(a_{n}\right)$ in A converging to α.
2. Suppose further $\alpha \notin A$, construct a strictly increasing sequence $\left(a_{n}\right)$ in A converging to α.
Exercise 3. For any fixed $a>0$, show that $\lim _{n \rightarrow \infty} \frac{a^{n}}{n!}=0$.
Exercise 4. For any fixed $p \in \mathbb{N}$, and $b \in \mathbb{R}$ satisfying $0<b<1$, show that $\lim _{n \rightarrow \infty} n^{p} b^{n}=$ 0.

Exercise 5. (Ratio Test) Let $\left(x_{n}\right)$ be a sequence of positive real numbers. Suppose

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=L \tag{3}
\end{equation*}
$$

where L is a non-negative real number.
(a) If $0 \leq L<1$, show that $\lim _{n \rightarrow \infty} x_{n}=0$.
(b) If $L>1$, show that $\left(x_{n}\right)$ is divergent.
(c) If $L=1$, show this method can not be used as a test for convergence. That is, there exists a convergence sequence $\left(x_{n}\right)$ such that (3) holds. There also exists a divergent sequence (x_{n}) such that (3) holds.
Exercise 6. (Root Test) Let $\left(x_{n}\right)$ be a sequence of positive real numbers. Suppose

$$
\lim _{n \rightarrow \infty} \sqrt[n]{x_{n}}=L
$$

where L is a non-negative real number.
(a) If $0 \leq L<1$, show that $\lim _{n \rightarrow \infty} x_{n}=0$.
(b) If $L>1$, show that $\left(x_{n}\right)$ is divergent.
(c) What happens if $L=1$?

