MATH 2050B Tutorial 2

October 5, 2016

Exercise 1. Evaluate the following limits by definition

$$\lim_{n \to \infty} \frac{5n^2 + 2n + 1}{3n^2 + n + 2},\tag{1}$$

$$\lim_{n \to \infty} \frac{5n^2 + 2n + 1}{3n^2 - n - 1}.$$
 (2)

Exercise 2. Let A be a nonempty bounded above subset of \mathbb{R} , and let $\sup(A) = \alpha \in \mathbb{R}$.

- 1. Construct a monotone increasing sequence (a_n) in A converging to α .
- 2. Suppose further $\alpha \notin A$, construct a **strictly** increasing sequence (a_n) in A converging to α .

Exercise 3. For any fixed a > 0, show that $\lim_{n\to\infty} \frac{a^n}{n!} = 0$.

Exercise 4. For any fixed $p \in \mathbb{N}$, and $b \in \mathbb{R}$ satisfying 0 < b < 1, show that $\lim_{n \to \infty} n^p b^n = 0$.

Exercise 5. (Ratio Test) Let (x_n) be a sequence of positive real numbers. Suppose

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = L,\tag{3}$$

where L is a non-negative real number.

- (a) If $0 \le L < 1$, show that $\lim_{n \to \infty} x_n = 0$.
- (b) If L > 1, show that (x_n) is divergent.
- (c) If L = 1, show this method can not be used as a test for convergence. That is, there exists a convergence sequence (x_n) such that (3) holds. There also exists a divergent sequence (x_n) such that (3) holds.

Exercise 6. (Root Test) Let (x_n) be a sequence of positive real numbers. Suppose

$$\lim_{n \to \infty} \sqrt[n]{x_n} = L,$$

where L is a non-negative real number.

- (a) If $0 \le L < 1$, show that $\lim_{n \to \infty} x_n = 0$.
- (b) If L > 1, show that (x_n) is divergent.
- (c) What happens if L = 1?